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Heterogeneous material is being considered as a ma-
terial in which the responses vary from point to point,
and thus the basic requirement for obtaining the macro-
material level property is to characterize the defor-
mation rate or the stress rate in terms of the micro-
level field data [1, 2]. Statistical mechanics has enabled
the macroscopic characteristics to be determined from
microscopic data and therefore well-defined statisti-
cal modeling provides enhanced understanding of de-
formation behavior coupled with microstructual re-
sponses. In order to represent the statistical distributions
in heterogeneous materials, methodologies to model
materials with spatial correlation functions have been
proposed over the years, and it is known that the correla-
tion functions can be formulated by the experimentally
measured probability functions [3, 4]. In spite of the
success of computer simulation technologies in mate-
rials science, however, it is still not easy to represent
adequately the microstructural features such as distri-
butions of phase, morphology, and geometry related
properties to the deformation behavior. Moreover mod-
eling the deformation behavior using the reconstructed
microstructural image from limited experimental data
needs proper physical and statistical approximations,
respectively [5].

It is well known that the α − β titanium alloys do not
readily cavitate during superplastic deformation, but the
materials deform inhomogeneously leading to ultimate
strain localization and failure [6, 7]. Microstructural
evolution, which is coupled nonlinearly with the de-
formation behavior, is important since it affects subse-
quent material properties, but in addition, contributes
to the development of non-uniform failure. The α − β

Ti-6Al-4V alloy is two-phase having different defor-
mation characteristics, and thus the local deformation
is strongly influenced by the heterogeneous phase dis-
tributions [8, 9]. The present paper therefore describes
the efforts to develop a generic model for determin-
ing the inhomogeneous deformation and failure cou-
pled with the heterogeneous microstructures within the
statistical mechanics framework. The work essentially
continues a newly developed methodology in which a
probabilistic model has been presented combined with
micro-level constitutive equations enabling the quan-
tities at macro-material level to be averaged over the
distributions of phase. As detailed in [10], the exper-
imentally observed spatial correlation functions were
developed, and microstructural evolutions have been in-
vestigated by means of two-point probability functions.

Here, however, attempts have been extended to develop
higher order probability functions such as three-point
functions providing the higher order corrections for the
heterogeneity of the materials [4]. The details of the
statistical characteristics including phase distributions
and their evolutions, therefore, can be correctly pre-
dicted using the model even though the geometry as-
sociated statistical properties of the two phases may
differ. Since the quality of final microstructure depends
on the properties of initial microstructure [11], Monte
Carlo simulation has been used together with the prob-
ability functions developed for the reconstruction of
microstructures. By imposing the precisely optimized
distributions of phase on the gauge-length region using
the simulation, the failure strain determined from the
finite element implementation thus shows much better
agreement with the experimental data.

The material used in this work is the two-phase tita-
nium alloy Ti-6Al-4V. Experimentally measured distri-
butions of phase size together with the volume fraction
of two phases obtained from superplastic tensile tests
have been used to determine the probability functions.
The correlation functions then have been formulated
in terms of the probability functions developed. The
details of the modeling approaches for the determina-
tion of superplastic behavior using the functions may
be found elsewhere [7, 10]. As the microstructure de-
forms, probability function is expected to change, and
the function corresponds to the probability of occur-
rence of a certain state. Three-point probability function
has been considered in the present work and the con-
ditional probability for the function may be expressed
in terms of the two-point conditional probabilities, φ′

1
and φ′

2, respectively as [4]

φ(r ′ ∈ hn | r ∈ hm, hl) = φ′
1(r ′ ∈ hn | r ∈ hm, h1)

+ φ′
2(r ′ ∈ hn | r ∈ hm, h2) (1)

in which the occurrence of probability is defined by
the state hn at r ′, given that the state hm, and hl oc-
cur at r and the origin point, respectively. Either 1 or
2 can be assigned to the phase as l, m, and n for two-
phase materials. It is apparent that the occurrence of
probability at some point is equal to the volume frac-
tion of the material, and thus the conditional proba-
bility, φ may be expressed in terms of the absolute
probability, Plmn with corresponding volume fraction
as φ(r ′ ∈ hn ∧ r ∈ hm ∧ hl) = Plmn/Vl. By employing
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T ABL E I Probability parameters for the three-point probability functions of Ti-6Al-4V at 900 ◦C

Plmn αlmn β1lmn β2lmn β3lmn δ1lmn δ2lmn δ3lmn γlmn Slmn Tlmn Wlmn

P111 0.118 0.122 0.122 0.122 0.005 0.005 0.005 −0.010 1.750 r0.942 8.590 (rr′)−7.590 0.934 [r1.137(r ′)0.799(r ′′)0.160]
P112 0.122 0.127 −0.122 −0.122 −0.005 −0.005 −0.005 0.500 1.750 r0.942 4.688 (rr′)−3.688 0.001 [r1.584(r ′)0.853(r ′′)1.271]
P121 0.122 −0.122 0.127 −0.122 −0.005 −0.005 −0.005 0.500 2.602 r0.890 −0.100 (rr′)1.100 0.001 [r1.584(r ′)0.853(r ′′)1.271]
P122 0.127 −0.127 −0.127 0.122 0.005 0.005 0.005 −0.010 2.602 r0.890 0.234 (rr′)0.766 0.934 [r1.137(r ′)0.799(r ′′)0.160]
P211 0.122 −0.122 −0.122 0.127 −0.005 −0.005 −0.005 0.500 2.602 r0.890 −0.100 (rr′)1.100 0.001 [r1.584(r ′)0.853(r ′′)1.271]
P212 0.127 −0.127 0.122 −0.127 0.005 0.005 0.005 −0.010 1.502 r0.879 4.688 (rr′)−3.688 0.934 [r1.137(r ′)0.799(r ′′)0.160]
P221 0.127 0.122 −0.127 −0.127 0.005 0.005 0.005 −0.010 2.602 r0.890 0.234 (rr′)0.766 0.934 [r1.137(r ′)0.799(r ′′)0.160]
P222 0.133 0.127 0.127 0.127 −0.005 −0.005 −0.005 0.010 1.502 r0.879 4.135 (rr′)−3.135 0.011 [r7.471(r ′)−5.942(r ′′)1.925]

the exponential forms of three-point probability func-
tions [3], then the absolute probability can be repre-
sented as

Plmn(r, r ′, r ′′) = αlmn +
3∑

k=1

βklmn exp(Slmnr )

+
3∑

k=1

δklmn exp[Tlmn(rr ′)]

+γlmn exp[Wlmn(rr ′r ′′)] (2)

where α, β, δ, and γ are the probability parameters
obtained from the limiting conditions, and the pa-
rameters, S, T , and W can be determined using the
two-point probability functions through the linear re-
gression analysis. The separation distances, r and r ′
are defined from the coordinate origin, and thus the
remaining distance, r ′′ is given by the angle, θ as
r ′′ = √

r2 + r ′2 − 2rr ′ cos θ . In two-phase material, it
is apparent that eight probabilities can be found for the
three-point probability function and the result of these
probabilities shows that the total sum equals approxi-
mately to unity. A macro-level is defined comprising
many micro-material cells in such a way that the prob-
ability functions can be represented by the experimen-
tally measured phase distributions.

In order to measure the heterogeneous distributions
of α − β phases, digital processing techniques with an
image analyzer have been used [10]. A total of 560 sets
of data (i.e., 20 microphotographs × 4 sections × 7
point sets) have been used for the analysis in each test
specimen. Fig. 1 shows a digital image of microstruc-
ture and unit grid-point cell for the determination of
the three-point probability functions. As can be seen,
each point has been numbered in its respective direc-

Figure 1 Diagram showing a unit grid-point cell in the digital image of
two-phase Ti-6Al-4V.

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0

P
111

P
211

P
121

P
221

P
lm

n

S t r a i n

0.0 0.2 0.4 0.6 0.8 1.0

P
112

P
122

P
212

P
222

S t r a i n

Figure 2 Graph showing the evolutions of probability with strain for
Ti-6Al-4V at 900 ◦C at a strain rate of 1 × 10−3 s−1.

tion with a particular angle, and then each phase within
any triangle is counted sequentially (i.e., 1-2-2′, 1-3-3′,
etc.). All the sets of experimental data of phase occur-
rences coupled with the volume fractions of each phase
over a range of strain rates were employed for the de-
termination of the probability parameters as shown in
Equation 2. The parameters determined for Ti-6Al-4V
at 900 ◦C are summarized in Table I. The predicted
variations of probability using the three-point proba-
bility function are shown in Fig. 2. As can be seen, the
probability changes approximately linearly with strain,
and in particular, increasing strain leads to significant
increasing the probability P111, but gradual decreas-
ing P222. The result shows good agreement with ex-
perimentally measured volume fractions of two phases
[10]. The probabilities obtained by the three-point func-
tions have been used for the determination of aggregate
stress-strain curves, and the result is shown in Fig. 3.
For the two-point probability functions, the materials
have been assumed initially to be statistically homoge-
neous and isotropic, and thus the orientation dependent
probabilities were generated in further anisotropy anal-
ysis. In a current work, however, proper formulation
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Figure 3 Comparison of the stress-strain curves using the two-point and
three-point probability functions with experimental data.
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Figure 4 Flow diagram showing the procedure for the determination of
failure strain.

incorporating the directional dependence of statistical
characteristics using the three-point probability func-
tions has been presented. It is known that α − β tita-
nium alloys do not readily cavitate, and failure pro-
cesses are governed by inhomogeneous deformation
rather than cavitation [6]. Usually the heterogeneity of
phase distributions can be observed in an undeformed
material and this initial non-uniformity may influence
deformation and failure. The probabilistic model de-
veloped has been implemented into the FE software to
predict the failure strain over a range of strain rates.
As detailed in previous work [7], failure strain was de-
termined at which the rapid decrease in average stress
to lead to strain localization. It is apparent that the ini-
tial microstructure is the most important factor that in-
fluences deformation characteristics, and thus the ma-
terial model using the microstructure obtained from
limited experimental data requires more accurate sta-
tistical representations [5, 11]. The overall process de-
veloped for the analysis is shown in Fig. 4 in which the
Monte Carlo simulation, together with the probability
functions determined are used to reconstruct the initial
microstructures. The Monte Carlo simulation provides
the most effective microstructural image followed by
the K-S (Kolmgorov-Smirnov) test through the com-
parisons with the probability distribution functions as-
sumed [12]. The results obtained are shown in Table II
in which three failure strains are indicated. By impos-
ing the precisely determined phase distributions on the
gauge-length region, the failure strain determined from
current work, therefore shows that good agreement with
experimental data is achieved for both strain rates. The
accuracy of the simulation depends on the quality of
random numbers [13, 14], and the probabilistic model
enabling the phase occurrence to be represented pro-
vides much better agreement with experimental data.

In summary, a robust probabilistic model is presented
for the determination of heterogeneous phase distri-

TABLE I I Comparisons between experimental and predicted failure
strains for Ti-6Al-4V at 900 ◦C

Two-point Three-point functions
ε̇ Experimental [7] functions [10] with MCS

1 × 10−3 s−1 1.55 1.46 1.48
1 × 10−4 s−1 1.72 1.82 1.67

butions of Ti-6Al-4V alloy. The effect of initial mi-
crostructures, and their evolutions on the superplas-
tic deformation can be correctly predicted using the
model. Since no considerable anisotropy is indicated
for the material at this temperature, the results have
shown that the probabilities change approximately lin-
early with deformation, and similar stress-strain curves
are obtained from both two- and three-point functions.
For the case in which different statistical characteristics
should be considered, however the three-point proba-
bility functions can be thought as an effective formu-
lation for the orientation dependent probabilities. The
FE analysis using the reconstructed microstructures
achieved by the Monte Carlo simulation shows better
agreement with experimental data of failure strain. The
unified probabilistic model therefore provides a step to-
wards the practical methodology for the determination
of random heterogeneous microstructure and deforma-
tion behavior.
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